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Abstract—The differential equations governing the free axisymmetric extensional vibrations of an elastic prolate
spheroidal shell submerged in an infinite acoustic medium are obtained in prolate spheroidal coordinates using
Hamilton’s principle.
Solutions are obtained by a perturbation technique which converges well for shells of small eccentricity.
Numerical results are presented for the fundamental mode, frequency and acoustic impedance of steel shells
in water for ratios of major to minor axis up to 1-23 over a wide range of shell length to thickness ratios.

1. INTRODUCTION

THE vibration of elastic prolate spheroidal shells vibrating in vacuo and in acoustic media,
has not been treated extensively in the literature due to the complexity of the shell equations
of motion. Analytical and numerical solutions of the vibration of prolate spheroidal shells
in vacuo are given in Refs. [1, 2] and [3, 4], respectively. Analytical and numerical solutions
of the vibration of submerged elastic prolate spheroidal shells were presented in Refs. [5]
and [6], respectively. This paper is primarily based on the work presented in Ref. [S]in a
condensed form.

In this paper the perturbation technique employed by Shiraishi and DiMaggio [2] to
study free, extensional non-torsional axisymmetric vibrations in vacuo of elastic prolate
spheroidal shells is extended to the case of submergence in an infinite acoustic medium.

Numerical results are presented for the fundamental mode, frequency and acoustic
impedance of steel shells in water for ratios of major to minor axes up to 1-23 over a wide
range of shell length to thickness ratios.

2. FORMULATION OF THE PROBLEM

A. Motion of shell

Using Flammer’s [7] notation the prolate spheroidal coordinate system and geometry
of the structure are shown in Figs. 1 and 2. The shell is assumed to be bounded by confocal
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F16. 1. Prolate spheroidal coordinate system.

spheroids defined by & = a+h/d, where d is the interfocal distance, # is the minimum
thickness, and & = a (eccentricity = 1/a) is the middle surface. The displacements w and u,
respectively perpendicular and tangent to the middle surface, are termed radial and

tangential.

The strain and kinetic energies of the shell, ¥, and T respectively, have been obtained by

Silbiger and DiMaggio [1] as
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in which dots denote differentiation with respect to time, E is Young’s modulus, g is the

shear modulus, v is Poisson’s ratio, p, is the mass density of the shell.

The appropriate functional involving p,, the fluid pressure on the shell surface, to be

used in applying Hamilton’s principle is

X; =~ fpawdS
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da=l

\nen,

F1G. 2. Geometry of structure.

where the negative sign is due to the choice of w as positive outward. This becomes, on
substituting the expression for dS, the elementary shell surface area in spheroidal coordin-
ates, and integrating with respect to the angle of revolution

nd® [*! , ,
Xy = - pawla® —n*)a® — 1) dn. )
-1

Application of Hamilton’s principle

5[‘(T—»;+X,)dz=o 5)

yields the desired equations of motion:

2
qu+wa+%(d§) Mii = 0 6)
pofda\? . 1{da\? [[a’—1
Lyt + Loyw+ 2% = |4 fle =
bt + www+#( 2) Mw ,uh( 3 PR Mp, (7

where the L,,, Ly, L,,, and L, are linear differential operators written out in Appendix I
of Refs. [2] and [5], and

2
M= %ﬁ(l ~%). ®)
Letting
uln, 1) = Uln) e'* ¥
w(n, ) = W(n) e (10)

pdn, &) = Pfn)e™ (1)
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in which U, W, P, and Q are complex {with the understanding that in these equations and
similar ones to follow, either the real or imaginary part of the right-hand sides may be
chosen) equations {6) and (7) become

L U+L, W—-AMU =0 (12
1 {da\? /[ a*~1
Ly U+LyW—iMW = ~—|—| [[5—5|MP, ‘
’ g uh( 2) \/(azng)MP (13)
where
d 2
A= Bf(ﬁ) Q2 (14)
ui2
By defining matrices
Luu LHW
L= (15)
qu LWW
M 0
M = (16)
0 M

in which (although L,,, # L.,) L and M are self adjoint, i.e. for arbitrary vectors X and Y,

1 1

f XLY dn = f YLX dy

N ‘ ;‘ (17
f XMY dn :f YMX dy

~-1 -1

where X signifies the transpose of X, and

"
U == [WJ (18)

0

" Lo =g
uh\ 2 at-n* "t 2
equations (12) and (13) can be simply written as
(L—AM)U = MP. (20)
Equation (5) also provides the natural boundary conditions
U(+£1) =0 21
W{+ 1) is bounded. (22)

B. Fluid potential
If the velocity potential ¥(&, 1, t) is expressed as

Y&, 1) = AD(E, m)e™ 23
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where A isan arbitrary constant, then @, which is complex, satisfies the scalar wave equation

[V2+ (%)Z}D =0 @24

where s is the velocity of sound propagation in the fluid. With the Laplacian expressed in
prolate spheroidal coordinates, the solution for the axisymmetric case is [7]

D, &, ) = 3. Sonlc, MR, &) = 3, Dol 1, E) (25)
where S,, and R,, are prolate spheroidal angle and radial functions of the first kind and
1 Qd

C. Boundary conditions at shell-fluid interface
The radial velocity of the shell is equal to that of the fluid at the surface:

W= [V(I’ . e§]§=a (27)

where V is the gradient operator, e, is a unit vector in the radial direction, and the dot in
the brackets denotes scalar multiplication. Equation (27) may be written as

X 1 oy
" [z,; —5] )
where h; is the radial scale factor which, in prolate spheroidal coordinates, is
d 62“’72 1
The pressure of the surrounding medium on the shell is given by
oy
P = ~pa[5l=a (30)
where p, is the mass density of the fluid. From equations (10), (23), (28) and (30) one obtains
@
Pa = pSARW |1 00 el (31)
he 08 |-,
so that, from equations (11), (14), (19} and (29)
@
Pa - pagz 4% —1'- ?_CB (32)
he 02, _,

_pedan [ 1] @
P =00 A{ a[@@/@@L}W‘ (33)
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3. EXPANSION INTO POWER SERIES IN 1/4°

The operator L of equation (15) may be expanded into
L = Z g~ ek (34)
=0

where the elements of the self-adjoint operators

g 1
LGY = i (35)
L g

are explicitly written out in Appendix I of Refs. [2] and [5] and seen to be independent of a,
while the matrix M of equation {16) may be written as

1
M =M+ M2 (36)

1—vj1l 0 f—v[ —n? O]
) (2) — X 37
M 2 [0 J’ M z[ R (37)

Solutions for the mode shapes U of equation (18), eigenvalues 4 of equation (14), and
pressure matrix P of equation (19) are sought in the form

where

U — Z a“ZkU(Zkl (38)
k=0
A= Z amzki(Zk} {39)
k=0
P =Y a 2PeY (40)
k=0
where the A2® and the elements of
RHEL
Uh — W(Z’"J 41
and
"0
Py~ 2P(2kJ (42)

are not functions of a. ‘
In Appendix I it is shown that an appropriate expansion of the functions @,, of equation

(25) for outgoing waves is
£ &

1
— i[%(l),(c, I’])"l'gg(l)g,((,‘, M+ .. }}

g s 1 1
q)an(ca f, (:) = —C“é—{[q)o(’?)+_q)2(f’» ’7) + (D4(Cs '7) + o
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where
@o(n) = Pum) (44)

is the Legendre polynomial of the first kind and order n. If @,, of equation (43) is substituted
into equation (24) with the Laplacian operator expressed in prolate spheroidal coordinates,
a recurrence equation on the @; is obtained by equating to zero the coefficients of each
power of 1/&:

. d d .
(= 1Y2(j+ ey + [5}3(1 -172}5;1+62(1 —712)+j(j+1)]®;
, (45)
(=171 2je®; - ji- 1D, =0
from which, using equation (44) and recurrence relations on Legendre polynomials, the
®; listed in Appendix II are obtained.
If equation (43) is substituted into equation (33), there results
p.da/2 __H
P=2"2 T W— 46
P =D AWy (46)
where H and B, infinite series in 1/a* with coefficients that are functions of the @; and c,
may be expressed in the form

H= ) a h[®fc ml-icaqlc, ®fe,n]}  j=01,2...,2% (47)
k=0
B= Y agle®fen], =012, 2%k+1). (48)
k 1

These expressions are not yet in an appropriate form since the coefficients of a ~2* are
still functions of c.
The function @; listed in Appendix II may be written as

1 J
(I)j(c9 7)) = E} kZ,O CZk(DEizk)(n)' (49)
From equations (14) and (26)
(ca)* = bi (50
where
H
b= s%p, (51
so that, from equation (39}
(ca)® = bé\joa-?-kﬁz** (52)

from which expansions in powers of a”2* can be obtained for (ca)?™, for m integral or
fractional, of the form

(caf™ = ¥ a 24,0007, j=012.. ..k (53)
k=0
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where A4,,[A%] indicates that for each m, the coefficients of « ~** are different functions of
the indicated A'*/. Substituting equations (49) and (53) into equations (47) and (48) one
obtains

X

H= ) a kgt (54
k=0
and
B= 3% a Btk (59)
k=0

where the H**' and B?¥, not functions of a, are listed for k = 0in Appendix II1. (They have
also been determined and used to obtain the results presented in this paper for k = 1-3,
Ref. [5].)

If now the expansions of equations (38), (39), (54) and (55) are substituted into equation
(46) the , P and thus P of equations (42) and (40) are obtained as

koo
2p(2k) — Z Z ACMAQRI =22k —2)) (56)
j=0 n=0
where the A?? are written out in Appendix IV and

da
Fo = 3*.

(57)

It is important to point out that from equations (44) and (49) it follows that H'*) and B‘”
are proportional to P2 so that the A?? blow up at those values of » for which P,n) = 0.
Therefore, although the ratio H/B and therefore the expression for , P of equation (46)
has no singularities, the series obtained to express these are not convergent in the vicinity
of the zeros of the Legendre polynomials.

Substituting equations (34), (36), (38), (39), (40) and (56) into equation (20) and equating
like powers of 4, an infinite number of differential equations on the U?Y are obtained as

{L(O}—A(O)[M(O)+M(O)A(O)]}U(2” — F(Zi) (58)

FO) _ [0] (59)
0

(2k) k
F(Zk) — 1F — Z [/'L(ZJ)M(O) + /1(21" Z)M(Z) — L(Zj)]U(Zk* 2j)
2F(Zk) frs!

where

(60)

i i~ 1

+ zk: {M(O) XJ: A(Zm)A(Zj*Zm)+M(2J IZ /1(2"1)/\(2}*2"!—2)} U(Zk-Zj)
j=1 m=0

m=0

with

_ 0 0
MGk = [0 M(Zk)], k=0, 1. (61)
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4. DETERMINATION OF MODES AND FREQUENCIES
A. Zero-order terms—uibrations of a submerged spherical shell
Setting i = 0 in equation (58) and using equation (59) one obtains
[LO = 1OM© + MOAOU® =0 (62)
which is identical to the limiting form of equation (20) as the spheroidal parameters
approach those for spherical geometry, i.e.

d
a - oo, d—0, and ~§~+r0. (63)

Equation (62) is thus the equation governing the free vibration of a submerged spherical
shell of radius r,. Using the elements of the operator L®, M® of equation (37), and A
listed in Appendix IV, equations (62) may be written as the two scalar equations

2 1_
—(L—n*)* d S[(1=nR U -1 -nUO (1 —112)%(1+V)-CLW(°’—1‘°)—*—VU(O’ =0 (64)
dn dn 2
d 247 7(0) ©_ 1=V oo pato HO'N _
(49 @ = UCT+ 2 WO = 22O 1+ R o | = 0. (69

These equations are satisfied by a solution of the same form as that used by Lamb [8]
for the spherical shell in vacuo, i.e.

4P,
Un) = (1-n*? (66)
dn
W) = K,P, (67)
where n is the mode number, P, is Legendre’s function of the first kind and order n and
2n(n+ 1)y
K, = n(n )3. T (68)
PR T B B R
ps h B
with
1+v
=1 (69)
where A% satisfies the frequency equation
10l Pato H® 4 [ D +1 2 }.(0) 42 =
" +EEW =4y |Inln+ DO+ D -2+ A7) +4"n(n+1) =0 (70)

which (see expressions for H® and B’ in Appendix I1I) yields only complex frequencies Q
with positive imaginary parts. The number of such roots depends on the mode number n.

Equation (70) may be shown to be identical to those obtained by Junger [9] and
Mann [10]. Junger gave no numerical results for the spherical shell while Mann, who
was not concerned per se with free vibrations, gives a response expression for one value of
(pa/ps)tro/h) whose denominator is a polynomial identical to the left-hand side of equation
(70) for the same value of the cited parameter.
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B. Higher order terms

The procedure followed is similar to that used in Ref. [2]. First A{*" is obtained once
A2 and UZY for all j < i are known. To accomplish this, both sides of equation (58} are
premultiplied by U{?’ and integrated betweenn = — 1 and +1 to give

J-l [O(O’L(O)U(Z“——1(0’0(0)(1\/1(0’+M(O)A(O))U(2”] dn — f [.J(O’F‘Z” d'? (71)
-1 -1

(where the mode subscript n is deleted in equation (71) and what follows) from which,
making use of the self-adjointness of L@, M@, M“, and equation (58), there follows

+1
j (©OFR2idy = 0. (72)
-1

If now equation (60) is substituted into equation (72), a non-transcendental solution for
A2 may be obtained as
4@ = ; r B x{ Z‘ 1 (o eigyei-2i dy
f TOM®© + MOAO( — QU@ dy  LU=1 7!
-1

_ ii‘ /l‘zj’J‘I O(O)M(O)U(zi—zj‘)d,,,__ i }L(zj—z)f1 G(O)M(Z)U(2i~2j}d” (73)
j=1 -1 j=1 -

i— 1
B Z1 /1‘2j’ J\l U(O)M(O)A(ZI*ZJ)U(O) dn Z Z /'L(ZI)J U(O)M(O)A(Zjvﬁ)U(Zi—Zj) d’l
-1

i=0 - j=11=
1 1
— Z Z A(Zi)f G(OJM(Z}A{ZJ—H~Z}U(2i‘2j} d,?_i{Zr‘}J\ U(O)ﬁ(i})A(OJQU(O)dn}
=1 i= -1

where the lengthy expression for @ is written out in Appendix VII of Ref. [5].
Once 1?) and the U®Y for all j < i are known, U?” can be determined. The two scalar
equations corresponding to equation (58) are

2 _—
~(1~n2)%§—2{(1—n2)%{1@“]-—[1—v+1—21,1<0}]012“ (L) (LW = P
n
(74)

parOH

h B(O))]W(Zl) — F(Zt) (75)

(1+v)i[(1—— %U‘Z"]+[2(1+v) A‘O’l (I+
dn 2

Differentiating equation (75) with respect to » and substituting into (74) to eliminate
dW??/dn, an equation on only U®" is obtained as

] 2
_(1_‘2)(14-” ’){ L U ) %Uﬂl’}

n(n+1) dn 76)
K, d,F@D
e 2y (2i) noov2
= =) P e

in which use has been made of equation (70).
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The method of variation of the parameters is now applied to equation (76). Assuming
Ut = UOV(y) (77)

where U© is given by equation (66) and V(n) is an undetermined function, and making use
of equation (70), dV/dy is obtained by substituting equation (77) into equation (76).
Integrating to get V and substituting into equation (77), U®Y is obtained as

v — (1 _"2)%dPn
" dn (718)
(F2D K, d,F@Y dP,
J n 24 n (1 _ 7’]2 n
X914 nn+1) f (1—n * nn+1) dn dy dn
K (1+v)—nin+1) (1 —n?)(dP,/dn))
Substituting equation (68) into (75), there results
K, 1 o d .

(2i) — F(Zl)____ 1— 2 }Ungt) 79
W n-|—1[1-+-v2 " dn( ) ] (79)

which, in conjunction with (78) yields, after algebraic manipulation

nn+1) dpP,
K,(1+v)—nn+1)J dn

[ .
J‘ 1- % n(n+1) dn dn dn dn (80)
n*)(dP,/dn)}?
K

n IFSIZi) 2F512i)
K(+v)—nn+D].) (1—n%) 1+v

where the constants of integration are determined by requiring that equations (78) and (30)
reduce to equations (66) and (67) for i = 0.

MZi) — Kn§Pn+

5. INCOMPRESSIBLE FLUID

If the velocity of sound in the fluid is made to approach infinity then, from equations
(26) and (51)
¢ — 0. (81)

b0 (82)
Since the series for H?" and B'*”, given in Appendix I11, have a finite number of terms for
each value of the mode number n, and the highest power of 1/bA‘® is the same for all values
of i for any given n, the ratios H??/H® and B?"/B‘© approach a finite limit as b — 0.
In this limit the imaginary parts of the H*”, and therefore of the A®?? and Q vanish. There-
fore, the damping due to the fluid vanishes and its only effect on the vibration of the shell
is the addition of a “‘virtual mass” of fluid to the mass of the shell in vacuo for radial motion,
leading to real frequencies which, while evidently lower than these for the shell in vacuo,

are found to be upper bounds to the real part of the fundamental frequency in a compressible
fluid.
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6. ACOUSTIC IMPEDANCE

The acoustic impedance ratio { may be defined as
(= (83)

where p, and W are the fluid pressure on the shell surface and radial velocity there due to
a forced harmonic excitation of real frequency w.

Using equations (10), (29), (31) and (50) and the definition of H/B from equations (33)
and (46), with w replacing the natural frequency , equation (83) may be written as

) 242 H
{ = iJ(bA) \/ (%— __""1 ‘)E (84)

where 4, obtained from equation (14) with o replacing (), is real and continuously variable.
By decomposing the right-hand side of equation (84) into real and imaginary parts
the acoustic impedance may be written as

{=0+iy (85)

where 6 and y are the acoustic resistance and reactance, respectively.
Since the expressions for H and B are in terms of the A% and it is desirable to know
6 and y as functions of n and ,/(b4) it was found expedient to choose

A2 = g (86)

so that continuous variation of A corresponding to continuous variation of g follows by
substituting equation (86) into equation (39) and adding the geometric series :

1

A= q(lv:f,'/gf)' (87)

7. NUMERICAL RESULTS FOR THE MODE » =2
OF STEEL SHELLS IN WATER

For steel shells in water using the following material properties as representative
E = 29 x 10° 1b/in?
v =03
ps = 0-2836 Ib/in>
p. = 0:0370 Ib/in®
5 = 4975 ft/sec

the terms A3?? and U?? of the series for frequency parameters and mode shapes of equations
(39) and (38) were computed for n = 2 and various ratios ro/h of shell length to thickness
from equations (73), (78) and (80).

For n = 2, the frequency equation (70) for spherical geometry yields 7 complex roots
V(D) (corresponding to seven complex frequencies by means of equation (14)) with
positive imaginary parts (one with zero real part) shown, for various ratios ry/h, in Table 1.
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J.root Yo
identifying 25 50 100 200
number
+0-80885026 +067806300 +0:54633071 4042250395
L2 T00477010641  +0024622887F  +0:0004567567i  +0-0026401789i
+4-5101644 +4:3424075 +40935453 +3:9610749
3.4 1021698105 F033118187i +0:30745044i 0186085067
, +1-1558071 +0-55392193 +0-40568554 +040955821
3.6 +1:0133781i 155051730 £ 0-94320466i + 083518950
7 +0:962341181 +1:2858262i +57382642i +12:530693i

Of these, the two pairs with low damping ratios approach the real roots for vibration in
vacuo as the fluid density diminishes.
In Table 2, all seven values of 2%? are shown for i = 0, 1,2 and 3 for ro/h = 25.
Letting

JA = a+iff (88)
a damping ratio 7 may be defined by
- ,___fM_ﬁ ______ (89)
N o+ ﬁz

TaBLE 2. A%Y FOR ryofh = 25

i i 1.2 3.4 5.6 7
0 0:65196335+0-077166037i  20-294502+ 1-9572404i  0-30895482+2:3425393i  — 092610054
1 11306226 +0-30451567i 12013223 + 1-1699525i 1-4968430 + 1-0584341i  —0-12907169
2 1:309207 + 0-9016935i 1035547 + 2-516328i 3712397 £ 081482460  — 4461715
3 — 301765 + 0-0845010i 652813 + 6:73996i 145802+ 1114172i  —61.8747

Close examination of Tables | and 2 shows that the convergence of the series for 1
becomes poor when a® < 3. Plots of o, # and 7 as functions of ro/h are given in Figs. 3, 4
and 5.

In Table 3 similar numerical results for an incompressible fluid are presented.

Finally, in Figs. 6 and 7, plots of the impedances y and 0 are given for n = 0, +1, and
+1/,/3 for a spheroidal shell with @® = 3, and compared with the 7-independent values for
a spherical shell (a® = oo). It should be noted that for n = + 1, the spheroidal values for

a® = 3 do not differ enough from the spherical values to be able to distinguish them on a
plot.
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TaBLE 3. FUNDAMENTAL VALUES OF A3,
INCOMPRESSIBLE FLUID

i rofh = 25 roth = 30
0 079515627 0-55302585
1 1-3722756 1-0079289
2 1-530256 1-151258

3 115229 0-818057

8. CONCLUSION

The perturbation technique presented herein has led to the first determination of
complex [requencies of submerged spheroidal shells, but it is too cumbersome to apply to
shells of larger eccentricity, when the convergence is very slow, to be practically useful. The
numerical results obtained, however, should provide valuable check points for any approxi-
mate or numerical solutions which may be formulated.
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APPENDIX 1. SERIES EXPANSION OF FLUID POTENTIAL
The prolate spheroidal radial functions R,, satisfy the differential equation [7).
dl ., dR,, . _
df{(é —1) dé —J (lon_c 5 )Rmz =0 (I'a)

where the [,, are eigenvalues. This has regular singular points at ¢ = +1 and an irregular
singular point of rank one at co. Letting

Roifc, &) = (2= 1)"¥c, &) (I-b)
equation (a) becomes
dzy 1 lmx - 6252
—7+[ P ]y =0 {I-¢c)
d¢ (&*-1) & -1
Expanding the bracketed term into a series of even negative powers of &, ie.
dZy o .
~S+y Y uETH =10 (I-d)
dé k=0
and substituting into (d) an assumed formal solution of the form 7
y=e%3 at” (I-e)
v=0
yields, upon equating like powers of &
o= 4ic (I-f)
and R,, is obtained as a series of the form
R, (¢ f)mi{{a +?ﬁ+?ﬁ+,.}+i i+§§+,.. {I-g)
e erTeETaET Tt s &

\yhere all the @, are related to a, by recurrence relations and the plus and minus signs
fagnify, respectively, incoming and outgoing waves. Utilizing the form of R,, obtained
in (g), one is led to try a similar series for ® of equation (25) with functions of n replacing
the gonstants. Thus, for outgoing waves and ¢ > 1, a series of the form of equation (43)
results.
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If the appropriate limits of equation (63) are taken to reduce (g) to spherical geometry.
the spherical Hankel functions of the first and second kind are obtained. Applying the

same limiting process to equation {43), it will be seen that, to reduce to the known [12]
spherical solution of the scalar wave equation, equation (44) must be satisfied.

APPENDIX IL. @,

1
o, = -i;{n(n—% VP, —c*(1—9*)P,}

D, = ~-—-~~;—{ (n—Da(n+ D(n+2)P,+*(1— n"')[Zn(m-l)P +4dd";‘}——c"(l wﬁ)zl’n}
1
P, = ﬁﬁ{—(n—Z){nw Dn(n+ 1) {(n+2)(n+3)P,

+cHl—n? )[3(}1~»2){n—-1)n(n+1)1’ +12n(n+1) ";-1-]

“.04(1*?12}2[3(1*?*2)(?1» )P, +12d§";1} c"(l—'fz)spn}

@, = 24;, 4{@: HNn—2(n—1)...(n+2n+3)n+4HP,

o dP.
— {1 - ryz)[él(n =3 (n—{n— Duln+ D+ 2)P,+24(n— Dn(n+ D{n+ 2)—5—‘}

dPn+l+48d2Pn+2j|

+c*(1—n?)? [6(;1 -3 (n—2)(n— 1)nP,+48(n—1)n dn ay?

— (1 —n?) [4(n~— 3)(n-2)P,,+24d12¥ ‘} +c8(1 —;12)411,}.

A more extensive list of @, up to i = 7 is given in Ref. [5].

APPENDIX IIL. H?) AND B??

HO = {d)«m ® ,1(03)[@(0)2+Z(D(O)(qu+(b,&‘°’)2{®w)z F 20000 + 2000
(b;o,)g, [DL” + 2000 + 20000 + 20PDL] + . }

~i/bA® {rpg’” @ A(O))[‘D(O)Z +200'P — DO
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(b ,1(0))2 o [B + 200708 + 20005 — 300D + DODL]

+ iy /1(10,)3 [P + 20 DL + 200 + 200 — 50 DY

+30000 - OOV + .. }
B = (b»‘“)@g’” + [P — 200D + D + 20 DY)

(b,1(0)) [4(1)(0)2 + 6(1)(0)(1)(0) 6(1)(0)(1)(0) + 2(1)(0)(1)(0) + (I)(O)2 + 2(1)(0)(1)(0) + 2(1)(0)(1)(0)]

+ m 90 + 100D’ + 160" DY’ — 100D

+ 6(13‘10’(I>£{” — 20000 + 0L’ 1 2000L) + 2000 + 2090

B ,1<0>)3 o [160” + 14DQ DL + 240DL) + 300L'DYL — 140D + 100D
— 6DLDY + 2000 + DL + 200DY + 200D + 20LD + 20504
+ ...

For any finite value of the mode number n, H*" and B?" contain only a finite number
of terms. For n = 2, e.g. all terms multiplied by a factor with powers of 1/bA* larger than
or equal to 3 are identically zero.

A more extensive list of H?9 and B*” may be found in Ref. [5].

APPENDIX IV. A®)

A(O) _ &ro H(O)
~ \p, h|BO

A@ — [PaTo H® [H® im
- EWW HO©  g©

A® — PaTo H® (H@® iﬂH(Z)+ B 2 B¥
“\p, h/BO |HO B© gO T|{gO] ~ gO"
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AbcrpakT—Omnpenensorcs nudpdepeHLMaNbHbIE YPaBHEHHS, KACAIOLIMECA OCECHMMETPHYECKUX KoNeOanmit
YAJNWHEHHs YIPYro# yIJIWHEHHOH cdeoupmanbuod 0060JI0YKH, IIOTPYXKEHHON B GECKOHEUHON aKyCTHYeCKO#i
cpene, B BhIPAXKEHHUSX YIITHHEHHBIX ¢epONaaIbHBIX KOOPDAMHAT, MCION3ys 3akoH [aMunbTOoHa.

Peitienns noy4aloTcst METOAOM BO3MYLIEHUS, 00JIaAarOIIMM HaIIexXalle CXOAMMOCTBIO 1Jist 060I104eK
C MAJIbIM 3KCUEHTPULMTETOM.

JlaroTca YMCIIEHHBIE PE3YIbTATHI JJIA OCHOBHOTO BHAA KOJleGaHMi, YACTOTRI M aKYCTHYECKOrO MMITEAaHca
[UIs CTanbHBIX OBONOYEK B BOXE, IIPM OTHOLUEHUAX OONBUIOH OCH X MeHbluei ao 1,23 W ans wmpoxoro
Kpyra OTHOLIEHMIt ANUHbI 0BOJIOYKH K TONIIMHE.



